Headlines > News > NASA's SDO Observes More Flares Erupting from Giant Sunspot

NASA's SDO Observes More Flares Erupting from Giant Sunspot

Published by Klaus Schmidt on Mon Oct 27, 2014 6:37 pm via: NASA
Share
More share options
Tools
Tags

Continuing a week’s worth of substantial flares beginning on Oct.19, 2014, the sun emitted two mid-level solar flares on Oct. 26 and Oct. 27. The first peaked at 8:34 pm EDT on Oct. 26, 2014, and the second peaked almost 10 hours later at 6:09 am EDT on Oct. 27. NASA’s Solar Dynamics Observatory, which constantly observes the sun, captured images of both flares.

Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.

NASA's SDO captured images of two M-class flares erupting from the same region on the sun. The flare on the left peaked at 8:34 pm EDT on Oct. 26, 2014; the flare on the right peaked at 6:09 am EDT on Oct. 27, 2014. The images show EUV light of 131 Angstroms, which is typically colorized in teal.  Image Credit: NASA/SDO

NASA's SDO captured images of two M-class flares erupting from the same region on the sun. The flare on the left peaked at 8:34 pm EDT on Oct. 26, 2014; the flare on the right peaked at 6:09 am EDT on Oct. 27, 2014. The images show EUV light of 131 Angstroms, which is typically colorized in teal. Image Credit: NASA/SDO

To see how this event may affect Earth, please visit NOAA’s Space Weather Prediction Center, the U.S. government’s official source for space weather forecasts, alerts, watches and warnings.

The first flare was classified as an M7.1-class flare. The second flare was a bit weaker, classified as an M6.7-class.

M-class flares are one tenth as strong as X-class flares, which are the most intense flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc.

The series of flares over the course of the previous week all erupted from a particularly large active region on the sun, labeled AR 12192 – the largest seen on the sun in 24 years. Active regions are areas of intense and complex magnetic fields that are often the source of solar flares.

Active regions are more common at the moment as we are in what’s called solar maximum, which is the peak of the sun’s activity, occurring approximately every 11 years.

previous 09:43 am
No comments
Start the ball rolling by posting a comment on this article!
Leave a reply
You must be logged in to post a comment.
© 2017 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use